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An Efficient Prediction-Based Routing
iIn Disruption-Tolerant Networks

Quan Yuan, lonut Cardei, and Jie Wu, Fellow, IEEE

Abstract—Routing is one of the most challenging, open problems in disruption-tolerant networks (DTNs) because of the short-lived
wireless connectivity environment. To deal with this issue, researchers have investigated routing based on the prediction of future
contacts, taking advantage of nodes’ mobility history. However, most of the previous work focused on the prediction of whether two
nodes would have a contact, without considering the time of the contact. This paper proposes predict and relay (PER), an efficient
routing algorithm for DTNs, where nodes determine the probability distribution of future contact times and choose a proper next-hop in
order to improve the end-to-end delivery probability. The algorithm is based on two observations: one is that nodes usually move
around a set of well-visited landmark points instead of moving randomly; the other is that node mobility behavior is semi-deterministic
and could be predicted once there is sufficient mobility history information. Specifically, our approach employs a time-homogeneous
semi-Markov process model that describes node mobility as transitions between landmarks. Then, we extend it to handle the scenario
where we consider the transition time between two landmarks. A simulation study shows that this approach improves the delivery ratio
and also reduces the delivery latency compared to traditional DTN routing schemes.

Index Terms—Disruption-tolerant networks (DTNs), landmarks, time-related Markov model, prediction, routing.

1 INTRODUCTION

IRELESS ad hoc networks have been traditionally
modeled as connected graphs with stable end-to-
end paths. However, for emerging wireless applications,
such as sensor networks for wildlife tracking and MANETSs
operating in challenging environments [2], wireless links
are short-lived and end-to-end connectivity turns out to be
sporadic. Such phenomena are prevalent in disruption-
tolerant networks (DTNs) [3], [4], [9], [12], where the
connection between nodes in the network changes over
time, and the communication suffers from frequent disrup-
tions, making the network partially connected. The inter-
mittent end-to-end paths and the changing topology make
conventional MANET routing protocols fail, as they are
designed with the assumption that the network stays
connected. Routing in DTNs is an especially challenging
problem because of the temporal scheduling element in a
dynamic topology, which is not present in traditional
MANETs. Nodes have to decide who the next hop is, but
also when to forward, as they route packets to destinations
in a store-and-carry way.
Researchers have proposed a number of broad methods to
solve the above issue. In general, previous related works fall
into three categories: mobile resource-based, opportunity-based,
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and prediction-based. In the first category [1], [18], systems
employ mobile resources (data mules and mobile agents) as
message ferries. These can be directed to pick up, move
toward the nexthop, and deliver messages to implement end-
to-end store-and-carry message delivery. In opportunity-
based schemes [22], [23], nodes forward messages during
contacts that are unscheduled or random. For the prediction-
based schemes [5], [7], internode contacts and mobility
behavior are predicted, generally using prior contact history.
Thenexthop and the contact in which a message is forwarded
areselected using the predictions such thata quality of service
(QoS) metric (e.g., delay or delivery ratio) is maximized. Most
of the existing prediction-based routing protocols focus on
the prediction of whether two nodes would have a contact in
the future without considering when the contact occurs. We
believe that lack of contact timing information undermines
the contact prediction accuracy, and consequently reduces
routing performance.

Based on our previous work [25], we propose predict
and relay (PER), a routing method for DTNs that relies on
predicting future contacts. We use a model based on a
time-homogeneous semi-Markov process (TH-SMP) model
to predict the probability distribution of the time of
contact, and the probability that two nodes will have a
contact in the future.

Our study is inspired by two observations from reality,
pointed out in [10]. One observation is that nodes in a
network within a social environment do not move
completely at random. Instead, they usually move around
a set of well-visited locations that we call landmarks [15], in
this paper. Specifically, nodes show preference for a small
number of landmarks and would move less often to the
neighborhood of other landmarks [24]. While near a
landmark that is visited by other users, a communication
device may use the opportunity to establish contacts with
other nodes and exchange messages. The second observa-
tion is that in some social environments, the node trajectory,
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in time is almost deterministic [17]. This means a node has
its own mobility schedule and it generally moves between
landmarks according to that schedule, subject to few
random deviations. For example, a student on a campus
moves between classrooms, dormitory, cafeteria, and gym.
The dwell time at each landmark, and the landmark
trajectory are fairly regular, with small variations. Nodes
keep one schedule for a relatively long interval (e.g., a
semester), so it can be assumed they operate in steady state
with a few deviations.

The objective of our work is to explore the solutions to
the routing problem in DTNs with a semi-Markov model.
The main contributions of this paper are: 1) a landmark
trajectory prediction method that uses a time-homogeneous
semi-Markov process to determine the probability distribu-
tion of node arrival time at landmarks, 2) a method to
determine a probabilistic contact profile that predicts inter-
node contacts, and 3) a set of message forwarding rules that
improve the message delivery ratio by controlling the
selection of the contact in which a message is transmitted to
the next hop. Simulation results show that our approach
raises the delivery ratio using the improved contact
prediction accuracy, compared with other traditional rout-
ing protocols. Furthermore, results show that PER also
reduces the delivery latency in DTNs.

The remainder of this paper is organized as follows: in
Section 2, we discuss the existing routing approaches in
DTNs. Section 3 describes the overview of the predict and
relay schemes. Section 4 presents the system model and
detailed routing schemes in our protocol. Section 5 models
transition time in node mobility based on our original
model and proposes the extended prediction system.
Section 6 provides simulation results. We conclude our
work in Section 7.

2 RELATED WORK

In the past, several routing schemes have been proposed to
improve the routing performance in DTNs. This section
reviews the related work in the past literature and
highlights their differences. Due to limited space, we focus
on results that inspired our work, or that are widely cited.

As mentioned before, there are three categories for
current routing schemes [8], [19] in DTNs: moving resources-
based, opportunity-based, and prediction-based. In the first
category, systems usually employ extra moving resources,
such as data mules and moving agents, as ferries for
message delivery. Researchers in [18] present an architec-
ture to collect data in sparse sensor networks, which uses
data MULE:s to pick up data from the sensors when in close
range, buffer it, and drop off the data to wired access points.
Similarly, in [1], buoys monitor the water quality in a lake,
and onboard sensors relay measurements using nodes on
tourist tour-boats and pleasure cruisers. Both of these
approaches improve routing performance with additional
mobile nodes, although controlling these resources leads to
extra cost and overhead.

The opportunity-based schemes utilize neither the
mobile resources nor the prediction methods for routing.
Instead, messages are exchanged only when two nodes
meet at the same place by chance. For example, Vahdat and
Becker [22] use the epidemic routing scheme by flooding.
Further, the ZebraNet [13] project applies such an approach
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to research on animal migrations and interspecies interac-
tions. Data are flooded in the network and eventually
reaches access points. Spray and Wait [20] protocol is a
multicopy routing protocol that controls the flooding
overhead by limiting the number of message copies
distributed in the Spraying phase, and then relies on direct
delivery when a message is transmitted to the final
destination. It then waits until the destination meets one
of them. Harras et al. [11] have improved and evaluated the
controlled message flooding schemes with heuristics, for
instance, on-hop limits or timeouts. Approaches falling into
this category usually distribute multiple copies in the
network to ensure a high reliability of delivery and a low
latency. But, they also bring a high price in regards to the
buffer occupancy and bandwidth.

In the prediction-based schemes, nodes” mobility is
estimated based on a history of observations. A typical
example is utility-routing [26], where each node maintains a
utility value for every other node that is updated using the
time between contacts. A node forwards a message copy only
to nodes with a higher utility for the message destination.
The utility value is considered as the predictor of two nodes’
future likelihood of contact. In [6], Burns et al. propose a
routing protocol that uses past frequencies of contacts, as
well as the past contacts. LeBrun et al. [14] propose a routing
algorithm for vehicular DTNs that uses the current position
and trajectories of nodes to predict their future distance to the
destination. In [5], researchers present MaxProp, a protocol
that mainly relies on the prediction of the path likelihoods
according to historical contact data. Protocol performance
evaluations are conducted on 60 days’ trace data from a real
DTN network deployed on 30 buses. MobySpace [16] is
another prediction-based generic algorithm for DTN routing
that uses a high-dimensional euclidean space constructed
upon nodes’ mobility patterns. The frequency of visits of
nodes to each possible location is recorded as the basis of the
future distance calculation in the euclidean space. Most of
these protocols focus on whether two nodes will have a
contact without sufficiently considering when the contact
occurs. Our approach, however employs a time-homoge-
neous semi-Markov process model to predict both the
contacts and their time. We predict when two specified
nodes have a contact based on their history information.
Since time is considered, our future contact prediction is
more accurate than the traditional ones.

3 PREDICT AND RELAY

We consider a DTN with a finite number of mobile nodes
with unique IDs that move mostly between a set of
landmarks. A landmark is defined as a place where nodes
can communicate directly, i.e., any two nodes that are located
at a landmark at the same time can establish a contact to
exchange messages. Nodes at different landmarks cannot
establish a contact. Landmarks are also assigned unique IDs.

As described in the introduction, the networks of social
nature have nodes follow a semideterministic trajectory,
with small deviations from a repetitive sequence of land-
marks with constant dwell times. For illustration in this
paper, we use a campus network where the landmarks are
independent WLANS installed in classrooms and buildings,
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Fig. 1. An example of a landmark-based mobility model. The solid line
denotes the mobility behavior of nodes. The dashed line stands for
forwarding packets.
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while nodes are the students and faculty with PDAs or
laptops. We acknowledge that in the real world the WLANs
are actually connected by a backbone. Another good
example of this type of DTN is a network in a rural area
where the landmarks consist of WLANSs located in villages,
interconnected by buses that carry messages on portable
computers. A campus DTN is shown in Fig. 1. In both
examples, nodes follow a scheduled route that is subject to
random deviations.

In prediction-based routing schemes, history information
is used to predict nodes’ future mobility, which becomes
the basis of the decision to forward messages toward the
destination. Most of the previous prediction-based DTN
routing methods predict whether two nodes would en-
counter each other, but consider when two nodes will meet
insufficiently. We argue that figuring out when two nodes
will meet with a probability distribution could improve the
delivery ratio, as well as reduce the delivery latency.

PER is a single-copy DTN routing protocol—only a
single instance of a message is forwarded toward the
destination. Each message carries in its header a time-to-live
(TTL) field. After the TTL expires, the message should be
dropped. Messages are forwarded hop-by-hop in a succes-
sion of contacts using a greedy approach. At each
forwarding step, PER selects the next hop that has the
highest probability of delivery to the destination.

When a node u has to forward a message from its
queue (e.g., at the beginning of a contact, or when a
message is received from an application) it computes a
probability metric f(x) for all nodes currently in contact
with u (the set N,), and for itself, z € {u} U N,. This metric
indicates the delivery performance to the destination if
node u selects node x as the next hop and forwards the
message to x.

The current node then selects the next-hop h as the node
for which the delivery probability metric is maximized

h= arg max f(=). (1)
If the selected next hop is the current node (h =
message will not be forwarded.

The formulation of the probability metric f(x) is detailed
in Section 4.3 and is based on predicting node mobility over
a finite time horizon. In contrast with prior research that
mainly focuses on estimating the probability of contact

u), then the

regardless of the contact time, our method uses landmark
trajectory prediction to determine the probabilities of
contact for each time unit. The prediction of nodes’ future
mobility relies on their trajectory history, that is recorded
and disseminated throughout the network in an epidemic
fashion. We believe this approach is feasible in a network
that has reached steady state.

Fig. 1 gives an example of the PER process. Node A
needs to send a message to node E. Located at the same
landmark with node A are nodes B,C,D. Based on the
history mobility information, A predicts that before the TTL
expires, node B has a better delivery performance to node £
than all other nodes in the Lab. Therefore, node A will
forward the message to node B. In this scenario, node B will
leave the Lab landmark later and will meet E in the
Classroom for delivery.

4 SysTEM MODEL

4.1 Assumptions

In this paper, we focus on the effectiveness of a time-based
mobility prediction for DTN routing. Thus, we make some
simplifying assumptions that will be addressed as part of our
future work. We assume that during a contact, nodes can
successfully transfer all messages needed to be forwarded.
This requires reliable transport and high bandwidth or long
enough contacts. These conditions can be more guaranteed
when two nodes tend to dwell at the same landmark for at
least several minutes in a DTN supported by 802.11a/g/n
WLANS, like a campus environment.

Moreover, each landmark has a unique landmark id in
the network, and nodes are aware of which landmark they
are located at anytime. Also, we assume that the whole
network is composed of the neighborhoods of landmarks,
which means a node is always associated to a certain
landmark in the network. Nodes spend zero time on the
transition between landmarks.

4.2 TH-SMP Model

We model the mobility of node m with a time homo-
geneous semi-Markov, (X", T") with discrete time. The
states are represented by the landmarks L=1,...,l. A
node that moves between two landmarks transitions in the
Markov process between the corresponding states. We
assume the transition probabilities between states have the
Markov memoryless property, meaning that the probability
of a node m transiting from state X" to state X}, is
independent of state XI",. Thus, process (X") is a standard
discrete-time Markov Chain. The random variable T)"
represents the time instant of the transition X' — X", .
Random variable 17", — T, describes the landmark so-
journ time, or state holding time. Note that the sojourn time
does not include the time when the nodes are in transit
between landmarks. These random variables are indepen-
dent and identically distributed (i.i.d.), with distributions
that do not change over time (time-homogeneous) and can
be different from the geometric or the exponential
distributions (semi-Markov).

The associated time-homogeneous semi-Markov kernel
Q is defined by
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Qi (1) =P(X}y =5, T}, —
... T

_P(X:ﬁH = JvTTﬁl

m m m.,
T <X, X"

T <t X" =1).

Suppose P = [p];| is the transition probability matrix of
the (X7") embedded Markov chain for node m. Then, the
transition probability from state ¢ to state j is

pij = lim Q(t) i,j€ L.

Also, we derive the probability S!"(¢) that node m will
leave the neighborhood of landmark ¢ on or before time unit ¢

ZQ’” (2)

Note that S"(¢) also indicates the distribution of the
dwell time at landmark i for node m, regardless of the next
landmark.

Let Z™ = (Z}",t € ») be another TH-SMP that describes
the state (landmark) occupied by node m at time ¢. The
transition probabilities for process Z are ¢j}(t) = P(Z}" =
JIZ5 =i). In the following, we drop the ™ superscript to
simplify the notation. If we know that a node is currently in
state ¢, after ¢ time units, it will be in state j with probability
¢ij(t). ¢ provides the prediction of the node’s location at a
landmark at an arbitrary time ¢ > 0 knowing its current
location. The derivation of ¢ is described next.

For a fixed current state i, ¢;;(t) forms the probability
mass function of the random variable that indicates the state
at time ¢. Thus, Zgzl ¢ij(t) =1 for any initial state ¢ and
future time ¢ > 0. For the border case t =0, ¢;;(0) = 6,
where ¢ is the Kronecker symbol.

To determine ¢;;(t), we start with a special case when the
process stays in state ¢ between time 0 and ¢, with no
transitions

S () = P(T7, — T < 41X =

P(X;=1iXo=1T1 >t)
=P —Ty >t|Xg=1)=1-—5;(t).
If the node transitions at least once between times 0 and ¢,
we consider on the time k of the first transition from i, and

on the state r to which the process moves immediately after
state i. We obtain

P(X; = j|Xo = i and at least one transition)

= ZQH‘ (,75,/ t_ )
=1 k=1

:

where Q;, (k) = dQ” = Qir(k) — Qir(k — 1) is the time deri-

vative of Q, assumlng a time step equal to the unit.
Putting it together, we obtain

1
6LJ+Z

r=1

t—

—_

¢L1(t) = ( QLT

1

¢r/t_ ) (3)

-~
Il

We first note that ¢ can be calculated iteratively, as ¢;;(t)
depends on probabilities ¢;;(t — k) computed in the
previous steps.

Specifically, since we consider the time discrete in our
model, (3) is rewritten as follows:
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¢ij(k) =

= dz}(k + Z Z Uu ¢7"] ) (4)

r=1 7=1

P(Zy, = j\Zo =1)

where dl](k) = (1 — Sq(k‘))(sl], ’(}L](k) = Q”(k), and k€ e.
Furthermore, v;;(k) can be approximated by the following
equation:

Qij(1),
Qij(k) — Qij(k

Using the assumption that the landmark dwell time random
variables are independent from the embedded state transi-
tion process (Xj;), we derive

Qij(k) = P(Xny1 = J, Tnsr — T < K[ Xy, = 1)
= P(X,1 = 41X, =1)
'P(Tn+1 -1, < k|Xn+1 =7, Xy = Z)
= pijSij(k).

St (k) is the probability that node m will move from
landmark 1 to landmark j at, or before time k. The time
parameter k can be used to represent a relative time offset.
Based on the Markov property of the underlying processes,
if the state 7 of a node is known at a time k;, than at time
k> ko, the probability of that node being in state j is
ij(k — ko).

With sojourn time probability distributions S;7 and the
transition probability matrix P™, we can predict the future
landmark location of node m based on its current location
using probability distributions ¢ (k). Section 4.4 describes
how to derive these probabilities.

for k=1,
vij(k) =
—1), fork>1

4.3 Contact Probabilities

In this section, we propose additional metrics to be used for
studying various probabilistic delivery probability metrics
f(z) during the packet forwarding defined in Section 3.

Distributions ¢} (k) give the probability that the future
location at time k of a node m will be j considering that at
time 0 the location was landmark i. Assuming that
trajectories of nodes are independent of each other and
that the most recent known state of node a is s, (at time k,),
and for node b is s, (at time k,, with k, < k, k, < k), the
probability of contact between a and b at a landmark ¢ at
time k is

Céb(k) =

Then, the probability that a and b are in contact at a time & at
any landmark is

oL (k= k) - ¢b ;(k — k) for k> 0.

k)= Ciy(k)

i€l

for k > 0. (5)

Note that Cy(k) does not define a proper probability mass
function, as 0 < ), Cop(k) > 1.

For our study of probabilistic delivery probability
metrics f(z), we define the probability that two nodes
begin their first contact at time k. Note that when we talk
about nodes a and b beginning their first contact at time £, it
means that they had no contacts in any prior time units in a
considered interval. Assuming that node trajectories are
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Fig. 2. An example illustrating the process of PER. (a) Network topology
at Time t. (b) Network topology at Time ¢ + At.

independent, the probability of the first contact at time £ is
defined as

k—

Rab H

t=0

,_\

Cup(t)) for k> 0. (6)

Denote the maximum message acceptable delivery delay
by D, which means packets are required to reach the
destination in time D. Moreover, Let n. be the chosen
neighbor for evaluating the delivery probability metrics,
and d is the destination. The prediction metric functions are
defined as follows:

Function 1. This prediction metric function is defined in
terms of the maximum probability of contact in time [1, D],
which is defined as

fi= max Cha(k), 1<k<D. (7)
Function 2. We define Function 2 based on the maximum
average probability of contact in time [1, D], which is

D
f2 = chud(k) (8)
k=1

Function 3. For this prediction metric function, we mainly
focus on the first contact probability. Thus, maximum
probability of the first contact before the deadline is the
basis of Function 3, which is

D
fs=_ Rua(k). 9)
k=1

Relay node selection is done based on the above
prediction functions. For each message that is taken from
the queue during a contact, the prediction metric is
computed using only one of the three prediction metric
functions for each neighbor (another node that is in contact
with the current node). In a greedy approach, the node with
the highest metric value is picked as the relay node to
forward the packet. Intuitively, the chosen neighbor should
have the largest contact probability with the destination in
the future D time steps. We refer to the PER algorithms using
Functions 1, 2, and 3 as PER1, PER2, and PERS3, respectively.
Once the relay node is determined, the message is forwarded
to it. If the selected node is the current node itself, then the
message will be kept in the queue for a later transmission.
The corresponding algorithm is shown in Algorithm 1.

Algorithm 1. Predict and Relay Algorithm
1. Node exchanges and updates the history mobility
information of other nodes with its neighbors.

/p” /"i/’* T\

Fig. 3. The Markov model of node m’s mobility.

2. Node uses one of the three prediction functions
(PER1, PER2, and PER3) to pick a neighbor as the
next hop.

3. Node forwards the packet to the chosen node in 2.

Fig. 2 is an example that illustrates the PER algorithm,
where node A sends a packet to node C at time ¢. Note that
at time ¢, node A is at landmark L1 and node C is at
landmark L2. With the history mobility information, A first
uses one of the three prediction metric functions, for
example, fi, to find the neighbor node B which is most
likely to meet the destination node C in the future. Then A
relays the packet to B. After At, B carries the packet and
moves to landmark L3, where it meets node C. Finally, C
gets the packet from B.

4.4 Deriving Mobility Parameters
4.4.1 Two Parameters

To calculate the prediction function f, PER needs to
compute two parameters: the transition probability matrix
P™ and the sojourn time probability distribution matrix,
SPi(k) for each node m. We retrieve these two parameters
from node mobility history.

P™ is the transition probability matrix of the embedded
Markov chain for node m. Fig. 3 shows an example transition
probability matrix for node m that visits four landmarks:
Classroom, Gym, Dormitory, and Lab. At any of those
landmarks, the node could pick to stay for a while, or move
to another landmark according to its preferred probability.
For example, if the node is at the gym, it can then

T .

move to the Lab with probability pf;;
or stay in the gym with the probability p}};

or go to the dormitory with probability p}}; and
4. or head for the Classroom with probability pi;.

wh =

Those mobility probabilities constitute the transition prob-
ability matrix P™. Note that each node has its own
transition probability matrix that reflects its trajectory
preference.

We define the P probabilities as follows:

Definition 1. The probability p]; that node m moves from
landmark @ to landmark j is deﬁned as the observed transition

frequency

s m

— m
pij = num;} /num;",

where num!" stands for the number of transitions from

landmark i without considering the next landmark, and num;
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is the number of transitions from landmark i to landmark j.
Obvzously, num{i < num;" and p;} < 1. By keeping track of
num}" and numgl, each node could generate and refine its own
P matrzx over time.

We calculate the sojourn time probability distribution
St (k), k € o as follows:

Definition 2. The sojourn time probability distribution at
landmark i when followed by a transition to landmark j,
St (k), is defined as

Syt (k) = P(t]} < k),

where t77 is the sojourn time or state holding time at landmark

1 when j is the next visited landmark. We assume that when

the network reaches steady state, the mobility history provides

a representative sample from which the sojourn time distribu-

tion can be drawn. Therefore, the probabilities P(t} < k) are

computed with the equation

k—

=> Pt

n=0

,_.

t”’ < k) (10)

In Markov processes, the sojourn time is usually
considered to have an exponential distribution. Our use of
a semi-Markov model eliminates this constraint and is more
reflective of real world processes.

Computing probabilities P(t} < k) is relatively simple.
For example, node m can measure all times ¢ whenever it
moves from landmark i to landmark j. In that way, the
distribution of the sojourn time probability is a discrete
distribution. For instance, assume that we have six
measurements for ¢, which are 2, 4, 4, 5, 4, 6. Then, the
P(t? < 5) is 2/3.

Next, we describe how a node can determine the sojourn
time distributions for all other nodes in the network.

4.4.2 History Information Exchange

To predict node mobility in the PER algorithms, every node
needs to know other nodes” mobility history information.
Specifically, the history mobility information is defined as a
5-tuple (nodeID, P, S, T, LandmarkID.,,), where P is the
transition probability matrix, S is the sojourn time prob-
ability distribution matrix, T;.. is the recording time when
the record is generated, and LandmarklD,,, is the recorded
landmark where the node is located when the record is
generated. Whenever two nodes become neighbors, they
will exchange the history mobility records they have. A
node adds the record of its new neighbor into its local
database, and updates the history information with the new
data by comparing the parameter T,.. Note that it is
possible that nodes only have a partial view of the whole
network. However, when a node calculates ¢;;(k) for the
neighbor and the destination, it is very possible that 7.,
from their records can be different, which means the start
time for computation is different. Therefore, the equations
for prediction in the above are no longer correct. To
improve the accuracy of predictions under this scenario,
we utilize the following modifications.

When node A wants to send a packet to node B, node A
first looks up B’s history mobility information locally,
which is (nodelDg, Py, Sg, Trecs, LandmarkI Dy, 5). If A
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needs to know where node B is at time ¢, the following
equation is used

QSLundma’rk'I DewrBj (t - ﬂ'ccB )

= P(Z: = j|Zr,,, = LandmarkID.,p) for j€ L,

where Z; is the landmark where the node is at time ¢.

Similarly, node A can adjust the calculation of ¢;;(k) for a
neighbor. The only difference is that it finds the neighbor’s
latest record, and replaces the start time with the recording
time T,.. in the record, as well as the start landmark with
the recorded landmark LandmarkID,,, in the record. Note
that the predicted time window for those two nodes may be
different in this way, to make sure that the mobility
behavior at the same future time spot is predicted.

The reader will notice that the size per node of the P
matrix (|L|*), and especially the S matrix could be
large—|L|*H for S, where H is the prediction window.
Nevertheless, we expect that in the real world these
matrices will be very sparse due to the typical routine
found in DTNs with social nature, where the node trajectory
is almost deterministic with small deviations, such as the
network of students in a campus or in public transportation.

5 PER wiTH TRANSITION STATES

In the previous chapters, we have assumed the DTN model
where nodes spend zero time units on traveling between
landmarks. However, in practical situations, a routing
protocol should be able to consider a node’s transition time
between landmarks. For example, it does take time for a
student to move from gym to classroom. Such transition
time lessens the precision of our prediction model, and
consequently, degrades the practical routing performance
of PER protocols. In this section, we extend our prior
prediction model by introducing the transition state
concept. We argue that although the change is subtle, our
new model is more applicable, and it is not trivial from the
design side because of the following issues. First of all,
the formal and detailed mechanism to model the node
behaviors and predict node contacts with the transition
states is needed. Second, because of the transition states,
memory usage is enlarged to collect and store history
information for predictions. Thus, a memory usage optimi-
zation is required to improve system performance.

5.1 Prediction Model Extension

The main idea to extend our prediction model is that we
introduce the transition states, and refine the prediction
model. A transition state is identified by its starting
landmark and ending landmark, which indicates that a
node is traveling from its starting landmark to its ending
landmark. Note that we assume that nodes can contact only
when they are at the same landmark. If there are [
landmarks in the network, the number of transition states
is I — I, and there are [? states for a node in total, including
the ! landmark states.

Before presenting the refined prediction model, we first
need to index the states for a node. In our previous model,
we can simply model nodes’ states based on the manually
assigned landmark IDs. ! landmarks indicate that a node
has [ states, however, as we mentioned, there are > —
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Fig. 4. The Markov model of a node’s states in a network with four
landmarks. The square indicates a transition state between two
landmarks, and the ellipse is the state at a landmark.

transition states, and indexing those transition states with
the unique manually assigned IDs turns out to be inefficient
and unpractical. To solve this issue, we present the
following indexing system for a node’s states. Let us use
the ii(1 <4 <) to denote the [ landmark states first. For a
transition state, if its starting landmark is ¢ and the ending
landmark is jj, the transition state is represented by ij.
Then, we utilize 1,2,...,1? to index the landmark states and
the travel states in the order of 11,12,...,1[,21,22,...,
2l,...,1l. For instance, the landmark state denoted by 33 is
indexed as 2 x [+ 1, and the travel state denoted by 23 is
indexed as [ + 3. With the above indexing system, mobility
behaviors of a node can be modeled as a Markov process, as
shown in Fig. 4. In this way, the transition states can
automatically be indexed only with the given landmark IDs.

With the above states indexing system, we refine our
prediction model for transition states as follows: we still use
the same notations in our previous work. Obviously, we
have Q;;(k) = p;;Si;j(k). Note that S;(k), the probability that
the node will leave state ¢ in time k also indicates the
distribution of the residence time at state i. Specifically,
when state 7 is a landmark state, S;(k) means the residence
time distribution at state i. If state ¢ is a transition state, S;(k)
is the traveling time distribution between two landmarks.
Thus, we have,

ZZ
Sz(k) = P(Tn+1 -1, < k|Xn = Z) = ZQL}(k) (11)
=1

We can then derive the probability ¢;;(k), which is the
probability that a node is at state ¢ at time & if it was at state
j at time 0 as follows:

2 k
¢l](k) = (1 - S7(k))6bj + Z/O‘ ¢rj(k - T)inr(T)

2 Pk
= (1 — Z QU(k)) 61’,7‘ + Z Z Qw(7_)¢71(k - T)'

r=1 =1

Since é;; is the Kronecker 6, and sz(k) can be approximated
with Q;;(k), #ij(k) could be determined by the mobility
history information p;; and S;;(k). Then, we can utilize the
¢ij(k) as the basis of our routing protocol for the DTN
model with transition states.

Since nodes can only talk to each other when they are at
the same landmark, contacts occur at the state with index

i x 1(1 <i <) based on our states indexing system. Con-
sequently, we need to modify the contact probability
definition as follows: the contact probability that node a
and b are in contact at a time & at any landmark is,

(k) = Z C§§l>(k) for k > 0.

I
(12)

The probability of the first contact at time % is defined as,

k—1

(k) = Cgy (k) H(l —Ch(t)) for k> 0.

t=0

(13)

The three probability metric functions are similar. The
only difference is replacing the contact probability C' with
C*, and the first contact probability R with R*.

5.2 Memory Optimization
Note that Z'::l pir = 1, and each node has its own transition
probability matrix. As mentioned before, p;; can be
calculated as the ratio of the number of transitions from
state ¢ to state j to the number of transitions from state 4
without considering the next state. However, considering
that there are 2 states in the network, counting the number
of transitions for each state is very resource consuming. In
addition, we need to establish a !* matrix to hold the
transition probability for every single node in the network.
We note that the state transition probability matrix P is a
sparse matrix and most of its elements are 0. For example,
because each travel state has only one possible successor
state, which is its ending landmark, moving from a travel
state to other states is impossible. Therefore, we define a
condensed matrix and a mapping function to take the place
of P, in order to save the overhead and memory. In that
way, we can only maintain the condensed matrix for storing
history information, and map it to P when we need to
calculate the contact probabilities for packet forwarding.
We define the landmark transition probability matrix
P = |p.s|(1 <e, f <) as the target condensed matrix. In P,
an element is the probability that a node moves from one
landmark to another regardless of travel states. For
example, pys indicates the probability that a node moves
from landmarks 2 to 4. There are [ x [ elements in matrix P,
and Z,Zf:1 Def = 1(1 < e, f <1). In addition, the landmark
index e in P represents the landmark with the state index
e x | in P. Observing that a node at a travel state can only
head for its ending landmark, and a node at a landmark
state can only go to its successor travel state, we define the
following mapping function between matrix P and P.

Definition 3. The mapping function between P and P is defined
as follows:

Def, ifi=exl+e,
andj=exIl+ f,
pij =< 1, if 7= (0%l) x 1+ i%l, (14)
and i # j,
0, other i, j.

The method of generating P is similar to the one we use for
P. With the mapping function and the landmark transition
probability matrix P, we could reduce the size of the stored
transition probability matrix from I* to 2.
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For other matrices used in our prediction model, like S,
@, and @, we expect in the real world these matrices to be
very sparse due to the typical routine found in semide-
terministic DTNs with a social nature, such as the network
of students on a campus or in public transportation. Thus,
basic schemes to store a sparse matrix, such as coordinate
format and compressed sparse row format, could be
utilized to optimize the memory usage in the system.

6 PERFORMANCE EVALUATION

In this section, we would like to evaluate our three PER
algorithms, and contrast their performance against several
simple single-copy routing algorithms and epidemic rout-
ing with custom simulations and real trace analysis. Our
main objective is to investigate whether the three PER
algorithms can increase the delivery ratio in comparison to
other single-copy routing algorithms. Also, we want to see
how the three PER algorithms provide better end-to-end
delivery latency.

Routing protocols. We have implemented and compared
the following routing schemes. Note that the names in the
parentheses are used to refer to the routing schemes in
result plots. We mainly focus on the single-copy schemes in
our simulation study.

Epidemic routing (“Epidemic”): a node would spread the
message it has to any nodes it encounters that have not seen
it yet. Eventually, every node in the network will obtain a
copy of that message. This protocol relies on multicopy
delivery, such that messages can reach the destination on
multiple paths. We implement this approach to investigate
the optimal end-to-end delivery latency between two nodes.

Utility-based routing (“Utility”): each node maintains a
utility value for every other node in the network, based on a
timer indicating the time elapsed since the two nodes last
encountered each other. Here, the smaller the elapsed time
is, the bigger the utility value will be. A node would
forward the message only to the neighbor which has the
larger utility for the destination.

Random selection (“Random”): a node would randomly
pick a neighbor as a relay node to forward the message until
the message reaches its destination.

Direct delivery (“Direct”): the source does not forward the
message to anyone unless it encounters the destination.

PER (“PERX"): a node would distribute a message with
the schemes described in this paper. Since we have three
different criteria to indicate whether to forward messages
for a node, we employ PER1, PER2, and PER3 to refer to our
three schemes, respectively.

Message generation. We use the poisson distribution to
model message generation in the network. In detail, we
regulate that the average message arrival rate in the
network is 10. For each message, we randomly select a pair
of nodes as source and destination, respectively.

6.1 Simulation Settings

We have used a custom packet-based simulator implemen-
ted in Java to evaluate and compare the performance of the
different routing protocols. Discrete time is used in our
simulation.

JANUARY 2012

In our simulation, we establish a landmark based DTN
model, where there are several predefined landmarks in the
network. Nodes usually revolve around these landmarks.
That is, nodes would stay in the neighborhood of a
landmark, or move to the neighborhood of other landmarks
with their own preferred probability. Two nodes can only
communicate when they are associated with the same
landmark. In our case, we simulate scenarios with 12
landmarks and 30 nodes. Initially, nodes are uniformly
distributed among the landmarks. Moreover, we assume
that every node has a trajectory deviation probability p,
which is used to simulate nodes’ semideterministic mobility
behavior. That is, every node has a probability 1 — p to visit
a landmark from where it is currently, and visit any other
|L| — 1 landmarks with probability p/(|L| —1). We also
regulate the probability that a node moves from landmark ¢
to landmark ¢ is 0, P; = 0. p is a simulation parameter that
varies from 0 to 0.5 with a step of 0.1.

We define the maximum sojourn time that a node moves
from a landmark to another as 2 + w, where w is called the
sojourn time width window and varies from 0 to 20 time units.
The sojourn time of a node is uniformly picked in [2,2 + w).
In all scenarios considered, each message is assigned a TTL
value of 40 time units. The prediction time window for the
three PER algorithms is fixed to 60 time units. The choice of
the time unit really depends on the network scenario and
applications. If the granularity of the time unit is too big,
say 1 hour, then we may miss the nodes’ location change
information. On the other hand, if the granularity is too
small, say 1 sec, then we may introduce unaffordable
memory usage when doing the prediction calculation. For
example, in a campus network, 5 minutes could be a
reasonable option as the time unit. In our simulation, we
specify the time unit as 5 minutes. To apply our PER
algorithms, a node needs to generate its transition prob-
ability matrix P and sojourn time probability distribution
Sij(k) first. Note that at the beginning, the acquired P and
Sij(k) are not stable, since the collected mobility history
information to generate those two parameters is not
sufficient. Therefore, to better evaluate the system perfor-
mance, we run the simulation for a “warm-up period” to
reach steady state, and collect sufficient history mobility
information to generate stable P and S;;(k). After that, the
simulator runs 2,048 time units for each scenario to collect
data. We then run each scenario ten times to report the
average. Considering the average message arrival rate is 10,
we believe that in 2,048 time units a sufficient number of
messages can be generated for retrieving the stable average
data tendency.

The common goals of any DTN routing protocol is to
maximize the delivery ratio, and to minimize the delivery
latency. Therefore, to evaluate the performance, we use the
following metrics: 1) Delivery ratio is defined as the ratio of the
number of successfully delivered messages to the number of
all messages generated in the network; and 2) Delivery latency
is the average end-to-end delivery latency between a pair of
source and destination nodes in the network.

6.2 Results in the Simplified DTN Model

First, we compare the delivery ratio and the delivery latency
of the three PER algorithms with other approaches under
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Fig. 5. Comparison of delivery ratio under different trajectory deviation probability p. (a) Trajectory deviation, p = 0.0. (b) Trajectory deviation, p = 0.2.

(c) Trajectory deviation, p = 0.5.

three different p scenarios with 0.0, 0.2, and 0.5, respec-
tively. In the p=0.0 case, nodes” mobility is very
deterministic. Therefore, the nodes’ future mobility predic-
tion becomes accurate. For p = 0.5, the network’s entropy is
higher as nodes move more randomly and the trajectory
prediction becomes less accurate. Case p =0.2 is on the
middle level. We just want to evaluate how the three PER
algorithms perform compared to other schemes under those
three scenarios. Fig. 5 plots the delivery ratio under the
three different p scenarios with w varying. We see that all
three PER algorithms gain larger delivery ratios than utility-
based routing, random selection routing, and direct
delivery approach. This is because, the three PER algo-
rithms have better mobility prediction when forwarding
messages, which could increase the possibility to contact the
destination. Also, as w increases, the delivery ratios of all
the routing schemes go down. A common reason is that
because as w rises, message delivery delay increases, even
beyond the predefined TTL, which downgrades the
delivery ratio. But for the three PER algorithms, another
reason is that when w increases, the accuracy of S;;(k) falls,
which then affects the accuracy of the future mobility
prediction. Besides, we find that, in p = 0.0, PER algorithms
perform much better than other routing schemes while in
p = 0.5, the advantage is reduced and all routing schemes
work very similar. In other words, the more deterministic
the nodes” mobility behavior is, the better PER performs.
Fig. 6 records the delivery latency under the three
different p scenarios where w changes. Although the three
PER algorithms are designed to increase the delivery ratio
in routing, their performance in terms of delivery latency is
better too, compared to other routing protocols. We can see

that in all three scenarios, the PER algorithms have less
delivery latency, even though, as p increases, the delivery
latency of the three PER algorithms becomes closer to other
protocols. Thus, we believe that accurate predictions during
messages’ forwarding process could also help reduce the
delivery latency. In addition, as w goes up, the delivery
latency of the three PER algorithms is raised. The reason is
obvious. Because nodes become less mobile, it will cost
more time to deliver messages with nodes” mobility.

We then compare the performance of the three PER
algorithms with other approaches, under three different w
with 0, 10, and 20, respectively. As explained before, w
controls the width of the uniform distribution from which
the node sojourn time is sampled. The intent behind this
experiment is to check how those routing protocols perform
under different nodes’ mobility. Note that a larger w implies
that nodes are less mobile. Thus, w =0 means nodes
transfer frequently among the neighborhoods of the land-
marks in the network while for w = 20, nodes’ transition
between nodes occurs less often, on average each (2+
20)/2 = 11 time units. In Fig. 7, we show the delivery ratio
under the three different w scenarios where p varies. In all
three scenarios, the three PER algorithms present better
delivery ratio than other protocols. Additionally, as p
increases, which implies that node mobility becomes less
deterministic, the delivery ratio of the three PER algorithms
falls down. But, p does not influence the delivery ratio of
other routing protocols. This trend indicates that when the
node mobility is less random applying the PER protocols
yields better results.

Fig. 8 summarizes the end-to-end delivery latency of all
routing protocols under the three different w scenarios. We
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Fig. 6. Comparison of delivery latency under different trajectory deviation probability p. (a) Trajectory deviation, p = 0.0. (b) Trajectory deviation,
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find that the higher the node mobility is, and the less
random the transition times are (lower w), the lower the
latency is for PER protocols. When the width of the
transition time window grows (w = 20), the PER prediction
accuracy falls, and the time spent by messages in queues
grows. As a consequence, the latency of PER protocols
grows comparable to that of the other protocols. Overall,
PER algorithms are more effective when the randomness of
the node trajectories is low, as seen in scenarios with
reduced trajectory deviation probability (p) and sojourn
time window width (w). In addition, similar to the trend in
the delivery ratio figures, p does not drastically influence
the delivery latency of other routing protocols. However, as
p grows, which indicates that mobility becomes less
deterministic, we see that the delivery latency of our three
PER algorithms goes down.

6.3 Stanford Trace Analysis

The Stanford trace [21] collects a 12-week log of a local-area
wireless network installed throughout the Gates Computer
Science Building of Stanford University. The building is L-
shaped (the longer edge is called the a-wing, and the shorter
the b-wing). It has four main floors with offices and labs, a
basement with classrooms and labs, and a fifth floor with a
lounge and a few offices. Each of the main floors has two
access points, one for each wing. Additionally, the library,
which spans both the second and third floors, also has an
access point. The basement has two access points, one near
the classrooms and one for the Interactive Room, a special
research project in the department. The smaller fifth floor
only has one access point. The wireless user community

roughly consists of 74 users including students, staff, and
faculty. The authors collected three separate types of traces
during a 12-week period, encompassing the 1999 Fall
quarter. Here, we use the SNMP trace. That is, every two
minutes, the router queries, via Ethernet, all twelve access
points for the MAC addresses of the hosts currently using
that access point as a bridge to the wired network. Once we
know which access point a MAC address uses for network
access, we know the approximate location (floor and wing)
of the device with that MAC address. We pair these MAC
addresses with the link level addresses saved in the packet
headers to determine the approximate locations of the hosts
in the tcpdump trace. Since the trace only records nodes’
location information at a specified time stamp, and
retrieving the transition time between landmarks is not
sufficiently accurate, here we analyze the Stanford trace
based on the simplified DTN model which does not
consider the transition time.

Because of the memory constraint, we select seven land-
marks and 30 nodes from the trace. Our data processing
includes the following steps. 1) To introduce more mobility in
the network without losing nodes’ location change informa-
tion, we use 4,000 original time slots as a time unit in our trace
analysis. Since original Stanford data records nodes’ beha-
viors from time stamp 51,281 t0 7,275,539, our total simulation
time turns to be 2,000 time units correspondingly. 2) We
divide the access points into seven landmarks, which are five
floors, library, and basement. Nodes can talk to each other
only when they are at the same landmark. 3) We find that in
the original trace there are some nodes barely moving. Such
nodes are simply removed from our analysis because our
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Fig. 9. Comparison of routing protocols under Stanford trace with different TTL. (a) Delivery ratio. (b) Delivery latency. (c) Number of forwards.

objective is to anticipate nodes’ future movements, and
predicting still nodes’” mobility is trivial. Also, for some
nodes, there are holes in the trace. A trace hole for a node
means that the node disappears in the trace for quite a long
time because of some restrictions in the trace collection. To
make the trace more consistent, we solve the trace hole by
repeating the node’s history movement during its disappear-
ing time. For each simulation, nodes were uniformly selected
tobe the source or destination of a packet. The message packet
generation is modeled by the poisson distribution, with the
average arrival rate 10 time units. All packets have an
expiration TTL (20 < TTL < 120), which represents the delay
requirement. The prediction window is 60 time units. Each
simulation was repeated 20 times with different random
seeds for statistical confidence. Besides delivery ratio and
delivery latency, we also look at the total number of forwards
in our analysis, which reflects the overhead in terms of the
number of times a packet forward occurred in the DTN.

Fig. 9a, 9b, and 9c show the results of delivery ratio,
delivery latency, and number of forwards for different
protocols, respectively. In Fig. 9a, the delivery ratio climbs
as the TTL is raised, and the delivery ratio of the epidemic
routing represents the upper bound. We see in this trace
case, PER2 and PER3 outperform other single-copy routing
protocols on delivery ratio, while PER1 does not have an
obvious advantage compared to others. The reason could be
that the prediction metric function 1 only focuses on the
maximum contact probability on a time unit, while
functions 2 and 3 consider the contact probability of a
period, which is more reliable in reality. Our PER protocols
and utility-based routing have better delivery ratio than the
random selection due to their own forwarding indicator. In
Fig. 9b, latency increases as the delay requirement of the
packet lessens because more long-lived packets are success-
fully delivered. All three of our PER protocols have less
delivery latency then other single-copy protocols due to the
efficient probability prediction. We also notice that when
TTL < 70, the delivery latency of the epidemic routing is not
the smallest. The reason is that epidemic routing delivers
more packets with a larger delivery ratio, and these packets
bring larger average delivery latency. When the TTL grows
larger than 70, there is less of an impact, and the epidemic
routing dominates with the smallest delivery latency.

In Fig. 9¢, the total number of forwards of our three PER
protocols are less than 2, which indicates that the PER
protocols can pick the relatively suitable neighbor to relay
message packets by using predictions, and save the

forwarding times as a result. Since the prediction window
is fixed at 60 time units, more predictions and forwardings
are conducted when the TTL climbs. Thus, when the TTL
varies from 20 to 120, the number of forwards of our three
PER protocols increases from 1.1 to 1.6, correspondingly.
Epidemic routing simply floods packets in the network,
which will drain the bandwidth and storage of the network.
Such a feature makes it impractical in reality, even though it
can maximize the delivery ratio and minimize the delivery
latency. Because random selection just simply forwards
packets without any indicator, its number of forwards is
larger than any other single-copy routing protocol.

6.4 Results in the DTN Model with Transition States

We use the DTN model with transition states as presented
in Section 5, where the extended PER (denoted by PER+) is
employed for routing in this simulation. We set landmark
trajectory deviation p as 0.2. The time that nodes spend on
the transition state when moving between two landmarks is
uniformly distributed in [3,5]. We define the maximum
landmark state residence time as 3 + w’, where w' is called
the landmark state residence time width. Note that an extreme
case is that the landmark state residence time is far larger
than the transition time, where the transition time can be
ignored. Such a case is already taken care of by our
simplified DTN model. Considering that, here we vary «/'
only from 4 to 8 time units. The landmark state residence
time of a node at a specified landmark is uniformly selected
in [3,3+w']. Note that large w' brings more mobility
uncertainty, and indicates that nodes may spend more time
at landmarks. In our simulation, we have seven landmarks
in the simulated network. For performance evaluation, we
consider three different network scale scenarios, with 4, 12,
and 30 nodes, respectively. The 4 nodes scenario is a sparse
network case, while the 30 nodes case indicates more
mobility because of the increasing node density. The
scenario with 12 nodes represents the middle level. Other
configurations are the same as described in the simplified
DTN model. Due to the limited space, we only implement
PER1 and PER1+. Moreover, we use the epidemic routing
algorithms to compare the performance of PER1 and
PER1+. The routing performance in terms of delivery ratio
and latency will be evaluated.

Fig. 10 plots the delivery ratio under different w’ for the
three different network scenarios. We see that PER1+ gains
a larger delivery ratio than PER1 approach. This is because,
our routing algorithm has better prediction of future
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Fig. 11. Comparison of delivery latency under different landmark state residence time width. (a) Number of nodes = 4. (b) Number of nodes = 12.

(c) Number of nodes = 30.

contacts. Different from the simplified DTN model results,
as ' increases, the delivery ratios of almost all the routing
schemes are going up. The reason is that as nodes stay
longer at landmark state while the traveling time is fixed,
there would be more contact opportunities. Besides, we
find that in the sparse network with 4 nodes, even the
epidemic routing cannot guarantee 90 percent delivery
ratio. When the number of nodes increases to 12 and 30,
epidemic routing can achieve almost 100 percent delivery
ratio, while the delivery ratio of our protocols is also
positively raised. This is because more nodes bring more
mobility in the network, which eventually increases the
message delivery opportunities.

Fig. 11 summarizes the end-to-end delivery latency
comparison under different w'. We find that PER1+ has
better deliver latency than PER1. Specifically, in the sparse
network scenario, the delivery latency of our algorithm can
even beat the epidemic routing at some point. But we
cannot say that our algorithm has lower average delay than
the epidemic routing solution, because the delivery ratio of
the epidemic routing is much better in the above case,
meaning more large latency messages are delivered
successfully, which may eventually raise the average
delivery latency. As the number of nodes increases to 30,
the delivery latency of epidemic routing dramatically
decreases because of the sufficient contacts in the network.
Additionally, when w' grows, nodes have more contact
opportunities, and more suitable message carriers could
be reached and employed to forward packets. Thus, the
protocol PER1+ can save more time on delivering message
packets to the destination, and as a result the delivery
latency is slightly reduced. Overall, PER+ is more efficient
than PER according to the results, especially under the
sparse network scenario.

7 CONCLUSIONS

In this paper, we propose the Predict and Relay scheme, an
efficient routing scheme in DTNs. We introduce a time-
homogeneous semi-Markov process model to predict the
future contacts of two specified nodes at a specified time.
With this model, a node can select a proper neighbor as
the next hop to forward the message. This paper defines
three different prediction functions to assist in choosing the
proper neighbor for message delivery. Simulation results
show that our approach raises the delivery ratio, as well as
reduces the delivery latency, compared to other traditional
DTN routing protocols.
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